login
A346740
Expansion of e.g.f.: exp(exp(x) - 5*x - 1).
6
1, -4, 17, -75, 340, -1573, 7393, -35178, 169035, -818603, 3989250, -19538555, 96084397, -474052868, 2344993157, -11624422855, 57722000172, -287012948441, 1428705217949, -7118044107698, 35489117143047, -177036294035559, 883588566571138, -4411213326568599, 22032317835916969
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = (1 - x + x * A(x/(1 - x))) / ((1 - x) * (1 + 5*x)).
a(n) = Sum_{k=0..n} binomial(n,k) * (-5)^(n-k) * Bell(k).
a(n) = exp(-1) * Sum_{k>=0} (k - 5)^n / k!.
a(0) = 1; a(n) = -5 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k).
MATHEMATICA
nmax = 24; CoefficientList[Series[Exp[Exp[x] - 5 x - 1], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] (-5)^(n - k) BellB[k], {k, 0, n}], {n, 0, 24}]
a[0] = 1; a[n_] := a[n] = -5 a[n - 1] + Sum[Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(Exp(x) -5*x -1) ))) // G. C. Greubel, Jun 12 2024
(SageMath)
[factorial(n)*( exp(exp(x) -5*x -1) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jul 31 2021
STATUS
approved