OFFSET
0,3
COMMENTS
Inverse binomial transform of A007556.
In general, for m > 1, Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(m*k,k) / ((m-1)*k + 1) ~ (m^m - (m-1)^(m-1))^(n + 3/2) / (sqrt(2*Pi) * m^((3*m-1)/2) * n^(3/2) * (m-1)^((m-1)*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..500
FORMULA
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^6 * A(x)^8.
G.f.: Sum_{k>=0} ( binomial(8*k,k) / (7*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) ~ 15953673^(n + 3/2) / (34359738368 * sqrt(Pi) * n^(3/2) * 7^(7*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
MATHEMATICA
Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[_] = 0; Do[A[x_] = 1/(1 + x) + x (1 + x)^6 A[x]^8 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 20; CoefficientList[Series[Sum[(Binomial[8 k, k]/(7 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[(-1)^n HypergeometricPFQ[{1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, -n}, {2/7, 3/7, 4/7, 5/7, 6/7, 1, 8/7}, 16777216/823543], {n, 0, 20}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(8*k, k)/(7*k + 1)); \\ Michel Marcus, Jul 28 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 27 2021
STATUS
approved