login
A346520
Number A(n,k) of partitions of the (n+k)-multiset {0,...,0,1,2,...,k} with n 0's into distinct multisets; square array A(n,k), n>=0, k>=0, read by antidiagonals.
23
1, 1, 1, 2, 2, 1, 5, 5, 3, 2, 15, 15, 9, 5, 2, 52, 52, 31, 16, 7, 3, 203, 203, 120, 59, 25, 10, 4, 877, 877, 514, 244, 100, 38, 14, 5, 4140, 4140, 2407, 1112, 442, 161, 56, 19, 6, 21147, 21147, 12205, 5516, 2134, 750, 249, 80, 25, 8, 115975, 115975, 66491, 29505, 11147, 3799, 1213, 372, 111, 33, 10
OFFSET
0,4
COMMENTS
Also number A(n,k) of factorizations of 2^n * Product_{i=1..k} prime(i+1) into distinct factors; A(3,1) = 5: 2*3*4, 4*6, 3*8, 2*12, 24; A(1,2) = 5: 2*3*5, 5*6, 3*10, 2*15, 30.
LINKS
FORMULA
A(n,k) = A045778(A000079(n)*A070826(k+1)).
A(n,k) = Sum_{j=0..k} Stirling2(k,j)*Sum_{i=0..n} binomial(j+i-1,i)*A000009(n-i).
EXAMPLE
A(2,2) = 9: 00|1|2, 001|2, 1|002, 0|01|2, 0|1|02, 01|02, 00|12, 0|012, 0012.
Square array A(n,k) begins:
1, 1, 2, 5, 15, 52, 203, 877, 4140, ...
1, 2, 5, 15, 52, 203, 877, 4140, 21147, ...
1, 3, 9, 31, 120, 514, 2407, 12205, 66491, ...
2, 5, 16, 59, 244, 1112, 5516, 29505, 168938, ...
2, 7, 25, 100, 442, 2134, 11147, 62505, 373832, ...
3, 10, 38, 161, 750, 3799, 20739, 121141, 752681, ...
4, 14, 56, 249, 1213, 6404, 36332, 220000, 1413937, ...
5, 19, 80, 372, 1887, 10340, 60727, 379831, 2516880, ...
6, 25, 111, 539, 2840, 16108, 97666, 629346, 4288933, ...
...
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
s:= proc(n) option remember; expand(`if`(n=0, 1,
x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
end:
S:= proc(n, k) option remember; coeff(s(n), x, k) end:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i=0, g(n), add(b(n-j, i-1), j=0..n)))
end:
A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
s[n_] := s[n] = Expand[If[n == 0, 1, x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]];
S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, g[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
A[n_, k_] := Sum[S[k, j]*b[n, j], {j, 0, k}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jul 31 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A346519.
Antidiagonal sums give A346521.
Sequence in context: A108087 A123158 A185414 * A362925 A133611 A010094
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 21 2021
STATUS
approved