OFFSET
0,1
COMMENTS
The largest even integer which cannot be written as the sum of 2n composite odd integers, for n >= 1, is 18*n + 20, proved by the Shippensburg University Mathematical Problem Solving Group (see Links).
LINKS
Ronald E. Ruemmler, Problem 1328, Mathematics Magazine, Vol. 62, No. 4 (October 1989), p. 274; Sums of Composite Odd Numbers, Solution to problem 1328 by Garrett R. Vargas, ibid., Vol. 63, No. 4 (October 1990), pp. 276-277.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
a(n) = 18*n + 20.
G.f.: 2*(10 - x)/(1 - x)^2. - Stefano Spezia, Jun 14 2021
From Elmo R. Oliveira, Dec 08 2024: (Start)
E.g.f.: 2*exp(x)*(10 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
EXAMPLE
For n = 1, a(1) = A118081(14) = 38.
MATHEMATICA
Table[18*n + 20, {n, 0, 55}] (* Amiram Eldar, Jun 14 2021 *)
LinearRecurrence[{2, -1}, {20, 38}, 60] (* Harvey P. Dale, Jan 15 2023 *)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Bernard Schott, Jun 14 2021
STATUS
approved