Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jun 14 2021 02:32:27
%S 1,0,9,6,9,8,3,1,1,9,1,1,4,3,5,7,1,5,0,9,2,5,1,4,8,0,4,9,3,7,5,0,9,6,
%T 6,6,4,9,3,6,2,1,1,6,7,6,0,5,4,3,6,7,2,8,7,7,6,5,4,3,4,5,2,9,8,6,9,4,
%U 6,3,6,6,6,6,6,0,3,1,8,2,1,6,7,7,0,9,7,0,7,3,2,2,6,3,4,6,7,2,5,6,6,8,6,5,5
%N Decimal expansion of Product_{p primes} sqrt(1 + 1/(4*p*(p-1))).
%H Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 50.
%F Equals sqrt(Pi) * lim_{n->infinity} sqrt(log(n))/n * Sum_{k=1..n} 1/A034444(k).
%e 1.09698311911435715092514804937509666493621167605436728776543452986946366666...
%t $MaxExtraPrecision = 1000; Clear[f]; f[p_] := Sqrt[1 + 1/(4*p*(p-1))]; Do[cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; Print[f[2] * Exp[N[Sum[Indexed[cc, n] * (PrimeZetaP[n] - 1/2^n), {n, 2, m}], 110]]], {m, 100, 500, 100}]
%o (PARI) sqrt(prodeulerrat(1 + 1/(4*p*(p-1)))) \\ _Amiram Eldar_, Jun 13 2021
%Y Cf. A034444, A083281, A345231.
%K nonn,cons
%O 1,3
%A _Vaclav Kotesovec_, Jun 13 2021