login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{p|n} (p #).
1

%I #10 Oct 18 2021 19:31:26

%S 0,2,6,2,30,8,210,2,6,32,2310,8,30030,212,36,2,510510,8,9699690,32,

%T 216,2312,223092870,8,30,30032,6,212,6469693230,38,200560490130,2,

%U 2316,510512,240,8,7420738134810,9699692,30036,32,304250263527210,218,13082761331670030,2312,36

%N a(n) = Sum_{p|n} (p #).

%F G.f.: Sum_{k>=1} prime(k)# * x^prime(k) / (1 - x^prime(k)). - _Ilya Gutkovskiy_, Sep 10 2021

%F a(prime(n)) = A002110(n). - _Wesley Ivan Hurt_, Oct 18 2021

%e a(14) = Sum_{p|14} p # = 2 # + 7 # = 2 + 7*5*3*2 = 212.

%t Table[Sum[Product[i^(PrimePi[i] - PrimePi[i - 1]), {i, k}] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 60}]

%Y Cf. A002110, A062797.

%K nonn

%O 1,2

%A _Wesley Ivan Hurt_, Jun 12 2021