OFFSET
1,6
COMMENTS
First differs from A335452 at a(30) = 4, A335452(30) = 6. The anti-runs (2,3,5) and (5,3,2) are not alternating.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutation, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
EXAMPLE
The a(n) alternating permutations of prime indices for n = 180, 210, 300, 420, 900:
(12132) (1324) (13132) (12143) (121323)
(21213) (1423) (13231) (13142) (132312)
(21312) (2143) (21313) (13241) (213132)
(23121) (2314) (23131) (14132) (213231)
(31212) (2413) (31213) (14231) (231213)
(3142) (31312) (21314) (231312)
(3241) (21413) (312132)
(3412) (23141) (323121)
(4132) (24131)
(4231) (31214)
(31412)
(34121)
(41213)
(41312)
MATHEMATICA
wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]], wigQ]], {n, 30}]
CROSSREFS
Counting all permutations gives A008480.
Dominated by A335452 (number of separations of prime factors).
Including twins (x,x) gives A344606.
Positions of nonzero terms are A345172.
A000041 counts integer partitions.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A344604 counts alternating compositions with twins.
A345170 counts partitions with a alternating permutation.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 13 2021
STATUS
approved