login
A345148
Numbers that are the sum of four third powers in six or more ways.
8
6883, 12411, 13104, 13923, 14112, 14581, 14896, 14904, 15561, 15876, 16317, 16640, 17208, 17479, 17992, 18739, 18865, 18928, 19035, 19080, 19376, 19665, 19712, 19763, 19880, 20007, 20384, 20755, 20979, 21203, 21231, 21420, 21707, 21896, 22409, 22617, 22743
OFFSET
1,1
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..10000
EXAMPLE
6883 is a term because 6883 = 2^3 + 2^3 + 2^3 + 18^3 = 2^3 + 4^3 + 14^3 + 14^3 = 3^3 + 7^3 + 7^3 + 17^3 = 3^3 + 10^3 + 13^3 + 13^3 = 4^3 + 10^3 + 10^3 + 15^3 = 7^3 + 8^3 + 8^3 + 16^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved