login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344868
Primes p that are equal to (prime(k)+2*prime(k+1)+3*prime(k+2))/2 for some k.
1
17, 101, 191, 227, 293, 431, 461, 557, 571, 757, 821, 863, 1039, 1193, 1213, 1277, 1291, 1307, 1373, 1483, 1499, 1721, 1811, 2239, 2293, 2309, 2447, 2689, 3167, 3181, 3547, 3617, 3701, 3881, 4243, 4441, 4703, 4723, 4871, 5651, 6079, 6101, 6133, 6829, 6907, 6997, 7523, 7853, 7879, 7949
OFFSET
1,1
COMMENTS
Corresponding values of k: 2, 10, 17, 20, 24, 33, 35, 41, 42, 53, 57, 60, 68, 77, 78, 81, 82, 83, 87, 93, 94, 104, 109, 131, 134, 135, 140, 153, 176, 177, 193, 196, 201, 209, 222, 233, 246, 247, 256, 288, 306, 307, 308, 337, 341, 344, 367, 379, 380, 382, 393, 395.
LINKS
EXAMPLE
17 = (3 + 2*5 + 3*7)/2, 101 = (29 + 2*31 + 3*37)/2.
MATHEMATICA
s = {}; Do[If[PrimeQ[p = (Prime[k] + 2*Prime[k + 1] + 3*Prime[k + 2])/2], AppendTo[s, p]], {k, 400}]; s
Select[(#[[1]]+2#[[2]]+3#[[3]])/2&/@Partition[Prime[ Range[ 500]], 3, 1], PrimeQ] (* Harvey P. Dale, Jan 28 2022 *)
PROG
(PARI) {p = 3; q = 5; r = 7; for (k = 1, 400, if (isprime (P = (p + 2*q + 3*r)/2), print1 (P ", ")); p = q; q = r; r = nextprime (r + 2))}
CROSSREFS
Cf. A034962.
Sequence in context: A139497 A139913 A255417 * A186258 A175518 A215234
KEYWORD
nonn
AUTHOR
Zak Seidov, May 31 2021
STATUS
approved