OFFSET
0,4
COMMENTS
Also the number of strict integer partitions of 2n with reverse-alternating sum >= 0.
Also the number of reversed strict integer partitions of 2n with alternating sum >= 0.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000
EXAMPLE
The a(1) = 1 through a(8) = 16 partitions:
(2) (4) (6) (8) (10) (12) (14) (16)
(3,2,1) (4,3,1) (5,3,2) (5,4,3) (6,5,3) (7,5,4)
(5,2,1) (5,4,1) (6,4,2) (7,4,3) (7,6,3)
(6,3,1) (6,5,1) (7,5,2) (8,5,3)
(7,2,1) (7,3,2) (7,6,1) (8,6,2)
(7,4,1) (8,4,2) (8,7,1)
(8,3,1) (8,5,1) (9,4,3)
(9,2,1) (9,3,2) (9,5,2)
(9,4,1) (9,6,1)
(10,3,1) (10,4,2)
(11,2,1) (10,5,1)
(11,3,2)
(11,4,1)
(12,3,1)
(13,2,1)
(6,4,3,2,1)
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
end:
a:= n-> b(2*n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Aug 05 2021
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&]], {n, 0, 30, 2}]
CROSSREFS
Even bisection of A067659.
The opposite type of strict partition (even length and odd sum) is A343942.
Row sums of A344649.
A120452 counts partitions of 2n with reverse-alternating sum 2.
A343941 counts strict partitions of 2n with reverse-alternating sum 4.
A344604 counts wiggly compositions with twins.
A344739 counts strict partitions by sum and reverse-alternating sum.
A344741 counts partitions of 2n with reverse-alternating sum -2.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 05 2021
STATUS
approved