login
A344627
Primes p such that exactly three numbers among all circular permutations of the digits of p are prime.
7
113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1031, 1091, 1097, 1103, 1109, 1123, 1181, 1213, 1231, 1279, 1297, 1301, 1319, 1327, 1579, 1777, 1811, 1873, 1913, 1949, 1951, 1979, 1987, 1993, 2131, 2311, 2377, 2399, 2713, 2791, 2939, 2971, 3011
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[500]], Total[Boole[PrimeQ[FromDigits/@ Table[ RotateRight[ IntegerDigits[#], n], {n, IntegerLength[#]}]]]]==3&] (* Harvey P. Dale, Mar 30 2023 *)
PROG
(PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
eva(n) = subst(Pol(n), x, 10)
is(n) = my(r=rot(digits(n)), i=0); while(r!=digits(n), if(ispseudoprime(eva(r)), i++); r=rot(r)); if(ispseudoprime(eva(r)), i++); if(n==1 || n==11, return(0)); if(i==3, 1, 0)
forprime(p=1, 1e3, if(is(p), print1(p, ", ")))
CROSSREFS
Cf. A270083. Row 3 of A317716.
Cf. primes where exactly k numbers among all circular permutations of digits are prime: A068654 (k=1), A344626 (k=2), A344628 (k=4), A344629 (k=5), A344630 (k=6), A344631 (k=7), A344632 (k=8).
Sequence in context: A163760 A179911 A376213 * A187867 A216288 A224554
KEYWORD
nonn,base
AUTHOR
Felix Fröhlich, May 25 2021
STATUS
approved