login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344553
Number of lattice paths from (0,0) to (2n-1,n) using steps E=(1,0), N=(0,1), and D=(1,1) which stay weakly above the line through (0,0) and (2n-1,n).
3
1, 3, 17, 119, 929, 7755, 67745, 611567, 5660033, 53415251, 512072241, 4972855783, 48817414177, 483649249179, 4829637141825, 48559914920927, 491195889610241, 4995080271452067, 51037379418765905, 523695644006188887, 5394266374440159649, 55756104288043890667
OFFSET
1,2
COMMENTS
These are the small nu-Schröder numbers with nu=NE(NEE)^(n-1).
LINKS
M. von Bell and M. Yip, Schröder combinatorics and nu-associahedra, arXiv:2006.09804 [math.CO], 2020.
FORMULA
a(n) = Sum_{i>=0} (1/n)*binomial(2*n-2,i)*binomial(3*n-2-i,2*n-1).
a(n) = A108424(n)/2.
a(n) ~ phi^(5*n - 1) / (4 * 5^(1/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 23 2021
a(n) = binomial(3*n - 2, 2*n - 1)*hypergeom([2 - 2*n, 1 - n], [2 - 3*n], -1) / n. - Peter Luschny, Jun 14 2021
D-finite with recurrence (n+1)*(2*n+1)*a(n) +3*(-6*n^2-2*n+1)*a(n-1) +(-46*n^2+135*n-98)*a(n-2) -2*(n-2)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Jul 27 2022
P-recursive: n*(2*n - 1)*(5*n - 8)*a(n) = (110*n^3 - 396*n^2 + 445*n - 150)*a(n-1) + (n - 2)*(2*n - 5)*(5*n - 3)*a(n-2) with a(1) = 1 and a(2) = 3. - Peter Bala, Jun 17 2023
EXAMPLE
For n=2 the a(2)=3 paths are NENE, NDE, and NNEE.
For n=3 the a(3)=17 paths are NENEENEE, NENEDEE, NENENEEE, NENDEEE, NENNEEEE, NDEENEE, NDEDEE, NDENEEE, NDDEEE, NDNEEEE, NNEEENEE, NNEEDEE, NNEENEEE, NNEDEEE, NNENEEEE, NNDEEEE, NNNEEEEE.
MAPLE
a := n -> binomial(3*n - 2, 2*n - 1)*hypergeom([2 - 2*n, 1 - n], [2 - 3*n], -1)/n:
seq(simplify(a(n)), n = 1..22); # Peter Luschny, Jun 14 2021
MATHEMATICA
Table[Sum[Binomial[2*n - 2, i]*Binomial[3*n - 2 - i, 2*n - 1], {i, 0, 2*n - 2}]/n, {n, 1, 20}] (* Vaclav Kotesovec, May 23 2021 *)
PROG
(PARI) a(n) = {sum(i=0, n, binomial(2*n-2, i)*binomial(3*n-2-i, 2*n-1))/n} \\ Andrew Howroyd, May 23 2021
CROSSREFS
Sequence in context: A074544 A165976 A368965 * A121572 A340993 A249924
KEYWORD
nonn,easy
AUTHOR
Matias von Bell, May 22 2021
STATUS
approved