login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344551
a(n) = Sum_{k=1..n} k^floor((n-k)/k).
7
1, 2, 3, 5, 6, 11, 12, 20, 27, 40, 41, 93, 94, 133, 208, 328, 329, 658, 659, 1217, 1746, 2269, 2270, 5768, 6269, 8330, 12777, 20253, 20254, 45253, 45254, 74390, 113867, 146652, 161211, 401275, 401276, 532367, 886818, 1412574, 1412575, 3053234, 3053235, 4889475, 8396664
OFFSET
1,2
LINKS
FORMULA
a(n) ~ 3^((n - 3 - mod(n,3))/3). - Vaclav Kotesovec, May 28 2021
G.f.: (1/(1 - x)) * Sum_{k>=1} x^k * (1 - x^k)/(1 - k*x^k). - Seiichi Manyama, Jun 06 2021
MATHEMATICA
Table[Sum[k^Floor[(n - k)/k], {k, n}], {n, 80}]
PROG
(PARI) a(n) = sum(k=1, n, k^(n\k-1)); \\ Seiichi Manyama, Jun 06 2021
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1-k*x^k))/(1-x)) \\ Seiichi Manyama, Jun 06 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 22 2021
STATUS
approved