login
A344444
Completely additive with a(2) = 12, a(3) = 19; for prime p > 3, a(p) = ceiling((a(p-1) + a(p+1))/2).
2
0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 60, 61, 61, 62, 62, 63, 63, 64, 64, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 71, 72, 72, 72, 72, 73, 73, 73, 73, 74, 74
OFFSET
1,2
COMMENTS
Monotonic until a(143) = 87 > 86 = a(144).
The only infinite monotonic completely additive integer sequence is the all 0's sequence (cf. A000004). The challenge taken up here is to specify one that is monotonic for a modestly long number of terms, using a comparatively short prescriptive definition.
To start we specify values for a(2) and a(3) so that a(3)/a(2) approximates log(3)/log(2). 19/12 is a good approximation relative to the size of denominator. This reflects 2^19 = 524288 having a similar magnitude to 3^12 = 531441. Equivalently, we can say 3 is approximately the 19th power of the 12th root of 2. This approximation is used to construct musical scales. (See the Enevoldsen link, also A143800.) There is no better approximation with a denominator smaller than 29. [Revised by Peter Munn, Jun 14 2022]
To find a good specification to use for a(p) for larger primes, p, we are guided by knowing that if 2*a(n) < a(n-1) + a(n+1) then a completely additive sequence is not monotonic after a(n^2-1) because a(n^2) < a((n-1)*(n+1)) = a(n^2-1). Considering n = p, we see we want a(p) >= (a(p-1) + a(p+1))/2; but the same consideration for n = p-1 shows we don't want a(p) larger than necessary. These considerations lead towards the choice of "a(p) = ceiling((a(p-1) + a(p+1))/2)" for use in the definition.
FORMULA
a(n*k) = a(n) + a(k).
EXAMPLE
a(4) = a(2*2) = a(2) + a(2) from the definition of completely additive. So a(4) = 12 + 12 = 24. Similarly, a(6) = a(2*3) = a(2) + a(3) = 12 + 19 = 31.
5 is a prime number greater than 3, so a(5) = ceiling((a(5-1) + a(5+1))/2). Using the values a(4) = 24 and a(6) = 31 that we calculated earlier, we get a(5) = ceiling((24 + 31)/2) = ceiling(27.5) = 28.
The sequence is defined as completely additive, so a(1) = 0, the identity element for addition. (To see this, note that "completely additive" implies a(2) = a(2*1) = a(2)+a(1), and solve the equation for a(1).)
MATHEMATICA
a[1] = 0; a[n_] := a[n] = Plus @@ ((Last[#] * Which[First[#] == 2, 12, First[#] == 3, 19, First[#] > 3, Ceiling[(a[First[#] - 1] + a[First[#] + 1])/2]]) & /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jun 27 2021 *)
CROSSREFS
Equivalent sequence with a(2)=5, a(3)=8: A344443.
First 10 terms match A143800.
Cf. row 23 of A352957.
For other completely additive sequences see the references in A104244.
Sequence in context: A342071 A107911 A143800 * A231290 A003335 A030609
KEYWORD
nonn,easy
AUTHOR
Peter Munn, May 20 2021
STATUS
approved