OFFSET
1,1
COMMENTS
Squarefree composites m such that LCM_{prime p|m} (p-1) = LCM_{prime p, p-1|m-1} (p-1).
Carmichael numbers m such that LCM_{prime p|m} (p-1) = LCM_{prime p, p-1|m-1} (p-1), i.e., with A173614(m) = A346467(m).
Carl Pomerance noted that, for k = 40826, Chernick's Carmichael number (6k+1)*(12k+1)*(18k+1) = 88189878776579929 satisfies this condition.
Theorem: lambda(m) | lambda(D_{m-1}) if and only if m | D_{m-1}.
Composites m such that lambda(m) | lambda(D_{m-1}) are all Carmichael numbers, defined as composites m such that lambda(m) | m-1, while lambda(D_{m-1}) | m-1 for every m.
Note that if p is prime, then lambda(p) = lambda(D_{p-1}) = p-1.
MATHEMATICA
c = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {_, _}][[;; , 2]]; q[d_] := If[PrimeQ[d + 1], d, 1]; Select[c, LCM @@ (FactorInteger[#][[;; , 1]] - 1) == LCM @@ (q /@ Divisors[# - 1]) &]
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar and Thomas Ordowski, May 06 2021
STATUS
approved