login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343848
a(n) = Sum_{k = 0..n} (n - k)! LaguerreL(n - k, -k).
2
1, 2, 5, 17, 77, 444, 3123, 25933, 248163, 2687200, 32460889, 432482545, 6296217017, 99388128516, 1690073020687, 30788225809509, 597998944638879, 12332575195452440, 269072563350272149, 6190949611140562505, 149789737789559221397, 3801359947725801283196
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} (n - k)! * Sum_{j=0..n-k} binomial(n - k, j) * k^j / j!.
MAPLE
A343848List := proc(n) local T; T := proc(n, k) option remember;
if n = k then return 1 elif n = k+1 then return k+1 fi;
(2*n-k-1)*T(n-1, k) - (n-k-1)^2*T(n-2, k) end:
seq(add(T(k, j), j = 0..k), k = 0..n) end: A343848List(21);
MATHEMATICA
a[n_] := Sum[(n - k)! LaguerreL[n - k, -k], {k, 0, n}];
Table[a[n], {n, 0, 21}]
PROG
(PARI)
a(n) = sum(k=0, n, (n - k)!*sum(j=0, n - k, binomial(n - k, j) * k^j / j!))
for(n=0, 21, print(a(n)))
CROSSREFS
Row sums of A343847.
Sequence in context: A099825 A014288 A330046 * A199164 A184509 A020096
KEYWORD
nonn
AUTHOR
Peter Luschny, May 08 2021
STATUS
approved