login
A343651
Irregular triangle T(n, k), n > 0, k = 1..A343650(n), read by rows; the n-th row lists the divisors d of n such that the product d * (n/d) can be computed without carries in binary.
2
1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 2, 3, 4, 6, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 2, 4, 5, 10, 20, 1, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 25
OFFSET
1,3
FORMULA
T(n, 1) = 1.
T(n, A343650(n)) = n.
EXAMPLE
Triangle T(n, k) begins:
1: [1]
2: [1, 2]
3: [1, 3]
4: [1, 2, 4]
5: [1, 5]
6: [1, 2, 3, 6]
7: [1, 7]
8: [1, 2, 4, 8]
9: [1, 9]
10: [1, 2, 5, 10]
11: [1, 11]
12: [1, 2, 3, 4, 6, 12]
13: [1, 13]
14: [1, 2, 7, 14]
15: [1, 3, 5, 15]
PROG
(PARI) row(n, h=hammingweight) = my (hn=h(n)); select(d -> hn==h(d)*h(n/d), divisors(n))
CROSSREFS
Cf. A343650.
Sequence in context: A027750 A275055 A254679 * A355634 A275280 A319845
KEYWORD
nonn,tabf,base
AUTHOR
Rémy Sigrist, Apr 25 2021
STATUS
approved