login
Numbers having exactly 1 divisor of the form 8*k + 3.
8

%I #12 Apr 06 2021 10:36:42

%S 3,6,9,11,12,15,18,19,21,22,24,30,35,36,38,39,42,43,44,45,48,55,59,60,

%T 63,67,69,70,72,76,77,78,83,84,86,87,88,90,91,93,95,96,107,110,111,

%U 115,117,118,120,121,126,131,133,134,138,139,140,141,143,144

%N Numbers having exactly 1 divisor of the form 8*k + 3.

%H Jianing Song, <a href="/A343112/b343112.txt">Table of n, a(n) for n = 1..10000</a>

%e 63 is a term since among the divisors of 63 (namely 1, 3, 7, 9, 21 and 63), the only divisor congruent to 3 modulo 8 is 3.

%o (PARI) res(n,a,b) = sumdiv(n, d, (d%a) == b)

%o isA343112(n) = (res(n,8,3) == 1)

%Y Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), this sequence (m=1, i=3), A343113 (m=1, i=5), A141164 (m=1, i=7).

%Y Indices of 1 in A188170.

%Y A007520 is a subsequence.

%K nonn,easy

%O 1,1

%A _Jianing Song_, Apr 05 2021