login
A343111
Numbers having exactly 2 divisors of the form 8*k + 1, that is, numbers with exactly 1 divisor of the form 8*k + 1 other than 1.
8
9, 17, 18, 25, 27, 33, 34, 36, 41, 45, 49, 50, 51, 54, 57, 63, 65, 66, 68, 72, 73, 75, 82, 85, 89, 90, 97, 98, 100, 102, 105, 108, 113, 114, 117, 119, 121, 123, 125, 126, 129, 130, 132, 135, 136, 137, 144, 145, 146, 147, 150, 161, 164, 165, 169, 170, 175
OFFSET
1,1
LINKS
EXAMPLE
63 is a term since among the divisors of 63 (namely 1, 3, 7, 9, 21 and 63), the only divisors congruent to 1 modulo 8 are 1 and 9.
PROG
(PARI) res(n, a, b) = sumdiv(n, d, (d%a) == b)
isA343111(n) = (res(n, 8, 1) == 2)
CROSSREFS
Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), this sequence (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), A141164 (m=1, i=7).
Indices of 2 in A188169.
A007519 is a subsequence.
Sequence in context: A134104 A124966 A224442 * A364540 A347250 A192049
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Apr 05 2021
STATUS
approved