login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342919
a(n) = A003415(n) / gcd(A001615(n), A003415(n)), where A001615 is Dedekind psi, and A003415 is the arithmetic derivative of n.
5
0, 1, 1, 2, 1, 5, 1, 1, 1, 7, 1, 2, 1, 3, 1, 4, 1, 7, 1, 2, 5, 13, 1, 11, 1, 5, 3, 2, 1, 31, 1, 5, 7, 19, 1, 5, 1, 7, 2, 17, 1, 41, 1, 2, 13, 25, 1, 7, 1, 1, 5, 2, 1, 3, 2, 23, 11, 31, 1, 23, 1, 11, 17, 2, 3, 61, 1, 2, 13, 59, 1, 13, 1, 13, 11, 2, 3, 71, 1, 11, 1, 43, 1, 31, 11, 15, 4, 35, 1, 41, 5, 2, 17, 49, 1, 17, 1, 11, 25
OFFSET
1,4
LINKS
FORMULA
a(n) = A003415(n) / A342458(n) = A003415(n) / gcd(A001615(n), A003415(n)).
a(n) = A342001(n) / A342459(n).
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A342919(n) = { my(u=A003415(n)); (u/gcd(u, A001615(n))); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 29 2021
STATUS
approved