login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342915
a(n) = gcd(1+n, A001615(n)), where A001615 is Dedekind psi, n * Product_{p|n, p prime} (1 + 1/p).
7
1, 3, 4, 1, 6, 1, 8, 3, 2, 1, 12, 1, 14, 3, 8, 1, 18, 1, 20, 3, 2, 1, 24, 1, 2, 3, 4, 1, 30, 1, 32, 3, 2, 1, 12, 1, 38, 3, 8, 1, 42, 1, 44, 9, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 60, 1, 62, 3, 32, 1, 6, 1, 68, 3, 2, 1, 72, 1, 74, 3, 4, 1, 6, 1, 80, 9, 2, 1, 84, 1, 2, 3, 8, 1, 90, 1, 4, 3, 2, 1, 24, 1, 98, 3, 4, 1, 102
OFFSET
1,2
LINKS
FORMULA
a(n) = gcd(1+n, A001615(n)).
a(n) = (1+n) / A342916(n) = A001615(n) / A342917(n).
MATHEMATICA
psi[n_] := If[n==1, 1, Times @@ ((#1+1)*#1^(#2-1)& @@@ FactorInteger[n])];
a[n_] := GCD[n+1, psi[n]];
Array[a, 105] (* Jean-François Alcover, Dec 22 2021 *)
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A342915(n) = gcd(1+n, A001615(n));
CROSSREFS
Cf. also A049559, A342458.
After n=1 differs from A143771 for the first time at n=44, where a(44) = 9, while A143771(44) = 3.
Sequence in context: A348972 A354718 A339964 * A276433 A343226 A030707
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 29 2021
STATUS
approved