login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(A001615(n), A003415(n)), where A001615 is Dedekind psi, and A003415 is the arithmetic derivative of n.
7

%I #13 Mar 29 2021 15:04:53

%S 1,1,1,2,1,1,1,12,6,1,1,8,1,3,8,8,1,3,1,12,2,1,1,4,10,3,9,16,1,1,1,16,

%T 2,1,12,12,1,3,8,4,1,1,1,24,3,1,1,16,14,45,4,28,1,27,8,4,2,1,1,4,1,3,

%U 3,96,6,1,1,36,2,1,1,12,1,3,5,40,6,1,1,16,108,1,1,4,2,3,8,4,1,3,4,48,2,1,24,16,1,7,3,20

%N a(n) = gcd(A001615(n), A003415(n)), where A001615 is Dedekind psi, and A003415 is the arithmetic derivative of n.

%H Antti Karttunen, <a href="/A342458/b342458.txt">Table of n, a(n) for n = 1..16384</a>

%F a(n) = gcd(A001615(n), A003415(n)).

%F a(n) = A003557(n) * A342459(n).

%F a(n) = A003415(n) / A342919(n).

%o (PARI)

%o A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A342458(n) = gcd(A001615(n), A003415(n));

%Y Cf. A001615, A003415, A003557, A342459, A342919.

%Y Cf. A301939 (gives the positions at which a(n) = A001615(n) = A003415(n)).

%Y Cf. also A175732, A342413, A342915.

%K nonn

%O 1,4

%A _Antti Karttunen_, Mar 28 2021