login
A342360
Decimal expansion of 1/(Omega+1)^2, where Omega=LambertW(1) is the Omega constant.
2
4, 0, 7, 1, 7, 6, 3, 8, 7, 2, 9, 6, 5, 6, 7, 1, 5, 7, 9, 0, 2, 8, 9, 0, 2, 0, 4, 7, 3, 5, 3, 9, 7, 6, 7, 7, 3, 1, 0, 5, 1, 0, 6, 4, 4, 1, 3, 4, 5, 2, 8, 4, 6, 5, 1, 4, 4, 9, 3, 3, 3, 9, 6, 9, 2, 9, 8, 1, 3, 2, 0, 9, 6, 6, 7, 5, 4, 1, 8, 5, 8, 6, 9, 5, 0, 8, 4, 0, 5, 5, 0, 8, 9, 6, 6, 6
OFFSET
0,1
FORMULA
Equals cos(A342359)^4 = 1/(A030178+1)^2 = (1-sqrt(A342361))^2.
Equals Integral_{t=0..1} (-t/LambertW(-1,-t*Omega^omega))^Omega, where omega=1/Omega=1/LambertW(1).
Equals A115287^2. - Vaclav Kotesovec, Mar 12 2021
EXAMPLE
0.40717638729656715790289020473539767731...
MATHEMATICA
Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[Cos[xi]^4, 120]
Omega=LambertW[1]; N[1/(Omega+1)^2, 120]
Omega=LambertW[1]; omega=1/Omega; NIntegrate[(-t/LambertW[-1, -t*Omega^omega])^Omega, {t, 0, 1}, WorkingPrecision->120]
PROG
(PARI) cos(atan(sqrt(lambertw(1))))^4
(PARI) my(Omega=lambertw(1)); 1/(Omega+1)^2
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Gleb Koloskov, Mar 09 2021
STATUS
approved