OFFSET
0,1
FORMULA
Equals Integral_{t=0..1} (-t/LambertW(-1,-t*Omega^omega))^Omega, where omega=1/Omega=1/LambertW(1).
Equals A115287^2. - Vaclav Kotesovec, Mar 12 2021
EXAMPLE
0.40717638729656715790289020473539767731...
MATHEMATICA
Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[Cos[xi]^4, 120]
Omega=LambertW[1]; N[1/(Omega+1)^2, 120]
Omega=LambertW[1]; omega=1/Omega; NIntegrate[(-t/LambertW[-1, -t*Omega^omega])^Omega, {t, 0, 1}, WorkingPrecision->120]
PROG
(PARI) cos(atan(sqrt(lambertw(1))))^4
(PARI) my(Omega=lambertw(1)); 1/(Omega+1)^2
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Gleb Koloskov, Mar 09 2021
STATUS
approved