login
A342106
Numbers that are not arithmetic and not balanced.
3
4, 8, 9, 10, 16, 18, 24, 25, 26, 28, 32, 34, 36, 40, 48, 50, 52, 58, 63, 64, 72, 74, 75, 76, 80, 81, 82, 84, 88, 90, 98, 100, 104, 106, 108, 112, 117, 120, 121, 122, 124, 128, 130, 136, 144, 146, 148, 152, 156, 160, 162, 170, 171, 172, 175, 176, 178, 180, 192, 194, 196, 200
OFFSET
1,1
COMMENTS
Equivalently, numbers m such that neither tau(m) (A000005) nor phi(m) (A000010) divide sigma(m) (A000203).
A342103, A342104, A342105 and this sequence form a partition of the set of positive integers N* (A000027).
There are no primes in the sequence since 2 is in A342104, 3 is in A342103, and odd primes >= 5 are in A342105.
EXAMPLE
Sigma(9) = 13, tau(9) = 3 and phi(9) = 6, hence sigma(9)/tau(9) = 13/3 and sigma(9)/phi(9) = 13/6, 9 is a term.
MAPLE
with(numtheory): filter:= q -> (sigma(q) mod phi(q) <> 0) and (sigma(q) mod tau(q) <> 0) : select(filter, [$1..200]);
MATHEMATICA
Select[Range[200], ! Or @@ Divisible[DivisorSigma[1, #], {DivisorSigma[0, #], EulerPhi[#]}] &] (* Amiram Eldar, Mar 08 2021 *)
PROG
(PARI) isok(m) = my(s=sigma(m)); (s % numdiv(m)) && (s % eulerphi(m)); \\ Michel Marcus, Mar 08 2021
CROSSREFS
Cf. A000005 (tau), A000010 (phi), A000203 (sigma).
Sequence in context: A312829 A078542 A124982 * A251606 A073042 A094349
KEYWORD
nonn
AUTHOR
Bernard Schott, Mar 08 2021
STATUS
approved