login
A341763
Numbers whose trajectory under iteration of sum of cubes of digits (map) produce a narcissistic number greater than nine.
0
2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85
OFFSET
1,1
COMMENTS
Conjecture: all multiples of 3 are terms of this sequence.
EXAMPLE
For a(1) = 2:
2^3 = 8.
8^3 = 512.
5^3 + 1^3 + 2^3 = 134.
1^3 + 3^3 + 4^3 = 92.
9^3 + 2^3 = 737.
7^3 + 3^3 + 7^3 = 713.
7^3 + 1^3 + 3^3 = 371.
371 is a narcissistic number.
MATHEMATICA
(* A example with recurrence formula to test if the number belongs to this sequence *)
f[1] = 2;
f[n_] := Total[IntegerDigits[f[n - 1]]^3]
Table[Total[IntegerDigits[f[n]]^3], {n, 1, 10}]
CROSSREFS
Cf. A055012 (sum of cubes of digits), A005188 (narcissistic numbers).
Sequence in context: A285964 A198045 A152854 * A201144 A095274 A079111
KEYWORD
nonn,base
AUTHOR
STATUS
approved