login
A341759
Primes p such that Euler(p, 1) is an integer multiple of Bernoulli(p + 1, 1).
1
5, 17, 41, 53, 293, 881, 2393, 4373, 5333, 5417, 6173, 7937, 12641, 13121, 14153, 16001, 16253, 18521, 23813, 27701, 37337, 42461, 48761, 50273, 58481, 74897, 82781, 88493, 106433, 113777, 143261, 174761, 195281, 227597, 236681, 249317, 297233, 336041, 341333
OFFSET
1,1
COMMENTS
Primes p such that p+1 is a term of A014741. - Bill McEachen, Sep 20 2021
EXAMPLE
Euler(17, 1) = 29127*Bernoulli(18, 1).
MATHEMATICA
Select[Select[Range[200000], IntegerQ[(2*(-1 + 2^#1))/#1] &] - 1, PrimeQ] (* Vaclav Kotesovec, Mar 24 2021 *)
Select[Prime[Range[30000]], Divisible[EulerE[#, 1], BernoulliB[#+1]]&]//Quiet (* Harvey P. Dale, Nov 06 2022 *)
CROSSREFS
Sequence in context: A078866 A332689 A342320 * A144620 A217622 A269728
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 24 2021
STATUS
approved