login
A341634
Smallest prime whose product of digits (A007954) is the n-th 7-smooth number = A002473(n), with a(0) = 101.
1
101, 11, 2, 3, 41, 5, 23, 7, 181, 19, 251, 43, 127, 53, 281, 29, 541, 37, 83, 11551, 139, 47, 523, 1481, 157, 149, 12451, 67, 59, 283, 11177, 2551, 239, 1187, 1453, 79, 881, 257, 89, 1553, 2851, 199, 347, 563, 1483, 277, 14551, 1753, 269, 827, 853, 15551, 367
OFFSET
0,1
COMMENTS
For n>=1, equals A107698 without the zeros.
101 is the smallest prime with the digit 0, so A007954(101) = 0 but as 0 is not a 7-smooth number, it is chosen a(0) = 101.
LINKS
FORMULA
a(n) = A107698(A002473(n)) for n>=1. - Amiram Eldar, Feb 17 2021
EXAMPLE
83 is prime, A007954(83) = 8*3 = 24 that is the 18th 7-smooth number, and as no prime < 83 has a product of digits = 24, a(18) = 83.
MATHEMATICA
pod[n_] := Times @@ IntegerDigits[n]; seq[max_] := Module[{sm7 = Join[{0}, Select[Range[max], Max[FactorInteger[#][[;; , 1]]] <= 7 &]], m, s, n, c, i, ind}, m = Length[sm7]; s = Table[0, {m}]; n = 1; c = 0; While[c < m, n = NextPrime[n]; i = pod[n]; If[MemberQ[sm7, i], ind = Position[sm7, i][[1, 1]]]; If[s[[ind]] == 0, c++; s[[ind]] = n]]; s]; seq[150] (* Amiram Eldar, Feb 16 2021 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Feb 16 2021
EXTENSIONS
More terms from Amiram Eldar, Feb 16 2021
STATUS
approved