login
A341596
Number of strictly inferior squarefree divisors of n.
29
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 3, 2, 1, 4, 1, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 5, 1, 2, 3, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 3, 2, 2, 4, 1, 3, 2, 2, 1, 5, 2, 2, 2
OFFSET
1,6
COMMENTS
We define a divisor d|n to be strictly inferior if d < n/d. Strictly inferior divisors are counted by A056924 and listed by A341674.
LINKS
EXAMPLE
The strictly inferior squarefree divisors of selected n:
n = 1 2 6 12 30 60 120 210 240 420 630 1050 1260
--------------------------------------------------------
{} 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
10 7 10 7 7 7 7
10 15 10 10 10 10
14 14 14 14 14
15 15 15 15
21 21 21
30 30
35
MATHEMATICA
Table[Length[Select[Divisors[n], SquareFreeQ[#]&&#<n/#&]], {n, 100}]
PROG
(PARI) a(n) = sumdiv(n, d, d^2 < n && issquarefree(d)); \\ Amiram Eldar, Nov 01 2024
CROSSREFS
Positions of ones are A000430.
The weakly inferior version is A333749.
The version counting odd instead of squarefree divisors is A333805.
The version counting prime instead of squarefree divisors is A333806.
The weakly superior version is A341592.
The strictly superior version is A341595.
The version counting prime-power instead of squarefree divisors is A341677.
A001221 counts prime divisors, with sum A001414.
A001222 counts prime power divisors.
A005117 lists squarefree numbers.
A033676 selects the greatest inferior divisor.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A207375 lists central divisors.
- Strictly Inferior: A060775, A070039, A341674.
Sequence in context: A241276 A325759 A292286 * A099042 A140774 A345345
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 23 2021
STATUS
approved