login
A341587
E.g.f.: log(1 + log(1 - x))^2 / 2.
8
1, 6, 40, 315, 2908, 30989, 375611, 5112570, 77305024, 1286640410, 23387713930, 461187042992, 9808283703684, 223833267479764, 5456669750439788, 141540592345674800, 3892707724320135616, 113153294901088030320, 3466501398608272647984, 111636571036702743967104, 3770483138507706753943584
OFFSET
2,2
LINKS
FORMULA
a(n) = Sum_{k=2..n} |Stirling1(n, k) * Stirling1(k, 2)|.
a(n) = Sum_{k=2..n} |Stirling1(n, k)| * (k-1)! * H(k-1), where H(k) is the k-th harmonic number.
a(n) = Sum_{k=1..n-1} binomial(n-1, k) * A003713(k) * A003713(n-k).
a(n) = A052822(n) / 2.
a(n) ~ sqrt(2*Pi) * log(n) * n^(n - 1/2) / (exp(1) - 1)^n * (1 + (gamma - log(exp(1) - 1))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 15 2021
MATHEMATICA
nmax = 22; CoefficientList[Series[Log[1 + Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
Table[Sum[Abs[StirlingS1[n, k] StirlingS1[k, 2]], {k, 2, n}], {n, 2, 22}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 15 2021
STATUS
approved