login
a(n) = (Sum_{k=1..5} k^n) mod n.
5

%I #14 Feb 10 2023 14:28:56

%S 0,1,0,3,0,1,1,3,0,5,4,7,2,13,0,3,15,13,15,19,15,11,15,19,0,3,0,27,15,

%T 25,15,3,27,21,15,31,15,17,30,19,15,19,15,11,0,9,15,19,1,25,21,43,15,

%U 31,25,27,54,55,15,19,15,55,36,3,5,55,15,27,18,55,15,67,15,55

%N a(n) = (Sum_{k=1..5} k^n) mod n.

%H Seiichi Manyama, <a href="/A341411/b341411.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A001552(n) mod n.

%F a(A056741(n)) = 0.

%p a:= n-> add(i&^n, i=1..5) mod n:

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Feb 11 2021

%t a[n_] := Mod[Sum[k^n, {k, 1, 5}], n]; Array[a, 100] (* _Amiram Eldar_, Feb 11 2021 *)

%o (PARI) a(n) = sum(k=1, 5, k^n)%n;

%Y (Sum_{k=1..m} k^n) mod n: A096196 (m=2), A341409 (m=3), A341410 (m=4), this sequence (m=5), A341412 (m=6), A341413 (m=7).

%Y Cf. A001552, A056741.

%K nonn,easy

%O 1,4

%A _Seiichi Manyama_, Feb 11 2021