Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 07 2021 23:30:52
%S 3,353,587,727,863,883,919,1217,1237,1657,2029,2203,2333,3209,3529,
%T 3617,3889,4889,5387,5557,5689,5749,6701,6961,7727,8443,9377,9433,
%U 10009,10243,10691,10799,11027,12071,12451,13681,13687,15569,15601,15823,16759,17939
%N Primes p such that (p^64 + 1)/2 is prime.
%C Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, A341210, A341224, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, ..., j=2^6=64, respectively.
%H Jon E. Schoenfield, <a href="/A341229/b341229.txt">Table of n, a(n) for n = 1..10000</a>
%e (3^64 + 1)/2 = 1716841910146256242328924544641 is prime, so 3 is a term.
%e (5^64 + 1)/2 = 271050543121376108501863200217485427856445313 = 769*3666499598977*96132956782643741951225664001, so 5 is not a term.
%p q:= p-> (q-> q(p) and q((p^64+1)/2))(isprime):
%p select(q, [$3..20000])[]; # _Alois P. Heinz_, Feb 07 2021
%t Select[Range[18000], PrimeQ[#] && PrimeQ[(#^64 + 1)/2] &] (* _Amiram Eldar_, Feb 07 2021 *)
%o (PARI) isok(p) = (p>2) && isprime(p) && ispseudoprime((p^64 + 1)/2); \\ _Michel Marcus_, Feb 07 2021
%Y Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), A341210 (k=4), A341224 (k=5), (this sequence) (k=6).
%K nonn
%O 1,1
%A _Jon E. Schoenfield_, Feb 07 2021