login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341033
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-k*x)).
2
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 37, 73, 1, 1, 1, 9, 73, 361, 501, 1, 1, 1, 11, 121, 1009, 4361, 4051, 1, 1, 1, 13, 181, 2161, 17341, 62701, 37633, 1, 1, 1, 15, 253, 3961, 48081, 355951, 1044205, 394353, 1
OFFSET
0,9
LINKS
FORMULA
T(n,k) = Sum_{j=1..n} k^(n-j) * (n!/j!) * binomial(n-1,j-1) for n > 0.
T(n,k) = (2*k*n-2*k+1) * T(n-1,k) - k^2 * (n-1) * (n-2) * T(n-2,k) for n > 1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 37, 73, 121, 181, ...
1, 73, 361, 1009, 2161, 3961, ...
1, 501, 4361, 17341, 48081, 108101, ...
MATHEMATICA
T[0, k_] = 1; T[n_, k_] := n!*Sum[If[k == n - j == 0, 1, k^(n - j)]*Binomial[n - 1, j - 1]/j!, {j, 1, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 03 2021 *)
PROG
(PARI) {T(n, k) = if(n==0, 1, n!*sum(j=1, n, k^(n-j)*binomial(n-1, j-1)/j!))}
(PARI) {T(n, k) = if(n<2, 1, (2*k*n-2*k+1)*T(n-1, k)-k^2*(n-1)*(n-2)*T(n-2, k))}
CROSSREFS
Main diagonal gives A293146.
Sequence in context: A361277 A300853 A293012 * A348481 A274391 A368862
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Feb 03 2021
STATUS
approved