login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340992
a(n) is the (2n)-th term of the n-fold self-convolution of the number of divisors function tau.
2
1, 2, 8, 41, 216, 1172, 6491, 36430, 206472, 1179104, 6774048, 39107400, 226683903, 1318427762, 7690414740, 44970645116, 263545466456, 1547445069318, 9101515979306, 53613206171619, 316243949777696, 1867702439169958, 11042787840419398, 65357054283015120
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^(2n)] (Sum_{j>=1} tau(j)*x^j)^n.
a(n) = A320019(2n,n).
MAPLE
b:= proc(n, k) option remember; `if`(k=0, 1,
`if`(k=1, numtheory[tau](n+1), (q->
add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23);
MATHEMATICA
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[0, n]], With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n - j, k - q], {j, 0, n}]]]];
a[n_] := T[2n, n];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 13 2023, after Alois P. Heinz in A320019 *)
CROSSREFS
Sequence in context: A254399 A375445 A337753 * A348474 A060436 A020083
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 01 2021
STATUS
approved