login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340990
a(n) is the (2n)-th term of the n-fold self-convolution of the primes.
3
1, 3, 29, 291, 3121, 34123, 379853, 4280251, 48681569, 557686227, 6425630909, 74384480019, 864461820049, 10079577033243, 117859582680813, 1381492094548651, 16227770995740865, 190979248798795427, 2251327736286726749, 26579050506578504195, 314212180691846338801
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^(2n)] (Sum_{j>=1} prime(j)*x^j)^n.
a(n) = A340991(2n,n).
MAPLE
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, ithprime(n+1),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23);
MATHEMATICA
b[n_, k_] := b[n, k] = If[k == 0, 1, If[k == 1, Prime[n + 1], With[{q = Quotient[k, 2]}, Sum[b[j, q] b[n - j, k - q], {j, 0, n}]]]];
a[n_] := b[n, n];
a /@ Range[0, 23] (* Jean-François Alcover, Feb 04 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 01 2021
STATUS
approved