login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of K3 = 11*sqrt(3)/(18*Pi) * Product_{primes p == 1 (mod 3)} (1 - 2/(p*(p+1))).
2

%I #14 Jan 25 2021 19:36:18

%S 3,1,7,0,5,6,5,1,6,7,9,2,2,8,4,1,2,0,5,6,7,0,1,5,6,4,0,7,1,5,0,0,6,3,

%T 6,8,1,6,7,8,5,2,6,8,7,4,8,9,1,8,4,4,2,4,3,1,4,8,4,0,9,8,7,5,9,8,7,1,

%U 8,1,5,4,4,5,9,2,4,3,2,2,6,3,8,2,1,8,8,9,3,9,8,4,9,0,1,7,1,7,7,0,9,9,1,5,1,2

%N Decimal expansion of K3 = 11*sqrt(3)/(18*Pi) * Product_{primes p == 1 (mod 3)} (1 - 2/(p*(p+1))).

%C The constant K3 from the paper by Finch and Sebah, p. 7. For more info see A340857.

%C Equal to the constant C3 = (d(3) - 1)*C3 from the paper by Finch, Martin and Sebah, p. 2730, formula (4).

%H Steven Finch, Greg Martin and Pascal Sebah, <a href="http://www.math.ubc.ca/~gerg/papers/downloads/RUNM.pdf">Roots of unity and nullity modulo n</a>, Proc. Amer. Math. Soc. Volume 138, Number 8, August 2010, pp. 2729-2743.

%H Steven Finch and Pascal Sebah, <a href="https://arxiv.org/abs/0912.3677">Residue of a Mod 5 Euler Product</a>, arXiv:0912.3677 [math.NT], 2009, p. 7.

%e 0.317056516792284120567015640715006368167852687489184424314840987598718...

%t $MaxExtraPrecision = 1000; digits = 121; f[p_] := (1 - 2/(p*(p + 1)));

%t coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];

%t S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);

%t P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]]*S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];

%t m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[3, 1, m]; sump = sump + difp; m++];

%t RealDigits[Chop[N[11*Sqrt[3]/(18*Pi)*Exp[sump], digits]], 10, digits-1][[1]]

%Y Cf. A340857, A340879.

%K nonn,cons

%O 0,1

%A _Vaclav Kotesovec_, Jan 25 2021