login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340870
a(n) is the smallest prime p such that p - 1 has 2*n divisors.
0
3, 7, 13, 31, 113, 61, 193, 211, 181, 241, 13313, 421, 12289, 2113, 1009, 1321, 2424833, 1801, 786433, 2161, 4801, 15361, 155189249, 2521, 6481, 61441, 6301, 8641, 3489660929, 12241, 3221225473, 7561, 64513, 1376257, 58321, 12601, 206158430209, 8650753, 184321
OFFSET
1,1
COMMENTS
First differs from A080372(n) + 1 for n = 17, where a(17) = 2424833, whereas A080372(17) + 1 = 2162689. - Hugo Pfoertner, Jan 26 2021
FORMULA
tau(a(n) - 1) = 2*n.
EXAMPLE
a(4) = 31 because 31 is the smallest prime p such that p - 1 has 2*4 divisors; tau(30) = 8.
MATHEMATICA
a={}; For[n=1, n<=40, n++, i=1; While[DivisorSigma[0, Prime[i]-1]!=2n, i++]; AppendTo[a, Prime[i]]]; a (* Stefano Spezia, Jan 25 2021 *)
PROG
(Magma) Ax:=func<n|exists(r){m:m in[2..10^7] | IsPrime(m) and #Divisors(m - 1) eq n*#Divisors(m)}select r else 0>; [Ax(n): n in[1..20]]
(PARI) a(n) = my(p=2); while(numdiv(p-1) != 2*n, p=nextprime(p+1)); p; \\ Michel Marcus, Jan 25 2021
CROSSREFS
Cf. A000005 (tau), A080372, A008328.
Cf. A066814 (p-1 has n divisors), A340799 (p+1 has 2*n divisors).
Sequence in context: A176589 A077314 A069246 * A253850 A087578 A023195
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 24 2021
STATUS
approved