OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are positive integers whose number of prime indices and sum of prime indices are both even, counting multiplicity in both cases.
A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 28 2024
LINKS
EXAMPLE
The sequence of partitions together with their Heinz numbers begins:
1: () 57: (8,2) 118: (17,1)
4: (1,1) 62: (11,1) 121: (5,5)
9: (2,2) 64: (1,1,1,1,1,1) 129: (14,2)
10: (3,1) 81: (2,2,2,2) 133: (8,4)
16: (1,1,1,1) 82: (13,1) 134: (19,1)
21: (4,2) 84: (4,2,1,1) 136: (7,1,1,1)
22: (5,1) 85: (7,3) 144: (2,2,1,1,1,1)
25: (3,3) 87: (10,2) 146: (21,1)
34: (7,1) 88: (5,1,1,1) 155: (11,3)
36: (2,2,1,1) 90: (3,2,2,1) 156: (6,2,1,1)
39: (6,2) 91: (6,4) 159: (16,2)
40: (3,1,1,1) 94: (15,1) 160: (3,1,1,1,1,1)
46: (9,1) 100: (3,3,1,1) 166: (23,1)
49: (4,4) 111: (12,2) 169: (6,6)
55: (5,3) 115: (9,3) 183: (18,2)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], EvenQ[PrimeOmega[#]]&&EvenQ[Total[primeMS[#]]]&]
PROG
(PARI)
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
isA340784(n) = A353331(n); \\ Antti Karttunen, Apr 14 2022
CROSSREFS
Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of prime powers is A056798.
These partitions are counted by A236913.
A001222 counts prime factors.
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
- Even -
A034008 counts compositions of even length.
A339846 counts factorizations of even length.
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.
Cf. A026424, A257541, A300272, A326837, A326845, A340385 (A340386), A340604, A353331 (characteristic function), A353332, A353333, A353334.
Squares (A000290) is a subsequence.
Not a subsequence of A329609 (30 is the first term of A329609 not occurring here, and 210 is the first term here not present in A329609).
Positions of even terms in A373381.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 30 2021
STATUS
approved