login
A340758
Number of partitions of n into 4 parts with the same number of distinct prime factors.
0
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 15, 18, 18, 22, 23, 27, 28, 32, 31, 38, 37, 41, 42, 49, 46, 53, 51, 62, 59, 70, 65, 82, 73, 89, 81, 99, 89, 108, 96, 118, 104, 128, 114, 142, 122, 153, 133, 167, 142, 178, 153, 195, 167, 207, 176, 225, 190, 243, 204
OFFSET
0,11
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} [omega(k) = omega(j) = omega(i) = omega(n-i-j-k)], where omega is the number of distinct prime factors (A001221) and [ ] is the (generalized) Iverson bracket.
MATHEMATICA
Table[Sum[Sum[Sum[KroneckerDelta[PrimeNu[k], PrimeNu[j], PrimeNu[i], PrimeNu[n - i - j - k]], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 80}]
CROSSREFS
Cf. A001221 (omega).
Sequence in context: A262525 A184105 A062469 * A238098 A328283 A034156
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jan 19 2021
STATUS
approved