login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340627
a(n) = (11*2^n - 2*(-1)^n)/3 for n >= 0.
2
3, 8, 14, 30, 58, 118, 234, 470, 938, 1878, 3754, 7510, 15018, 30038, 60074, 120150, 240298, 480598, 961194, 1922390, 3844778, 7689558, 15379114, 30758230, 61516458, 123032918, 246065834, 492131670, 984263338, 1968526678, 3937053354, 7874106710, 15748213418, 31496426838
OFFSET
0,1
COMMENTS
Based on A112387.
Prepended with 0, 1, its difference table is
0, 1, 1, 2, 1, 4, 3, 8, ... = mix A001045(n), 2^n.
1, 0, 1, -1, 3, -1, 5, -3, ... = mix A001045(n+1), -A001045(n).
-1, 1, -2, 4, -4, 6, -8, 14, ... = mix -2^n, A084214(n+1).
2, -3, 6, -8, 10, -14, 22, -30, ... = mix 2*A001045(n+2), -a(n).
FORMULA
a(n) = 2^(n+2) - A078008(n), n>=0.
a(n) = (A062510(n) = 3*A001045(n)) + A001045(n+3), n>=0.
a(0)=3, a(2*n+1) = 2*a(2*n) + 2, a(2*n+2) = 2*a(2*n+1) - 2, n>=0.
a(n) = 4*A052997(n-1) + 2, n>=2. - Hugo Pfoertner, Apr 25 2021
a(n+1) = 11*2^n - a(n) for n>=0.
a(n+3) = 33*2^n - a(n) for n>=0.
a(n+5) = 121*2^n - a(n) for n>=0.
etc.
a(n+2) = a(n) + 11*2^n for n>=0.
a(n+4) = a(n) + 55*2^n for n>=0.
a(n+6) = a(n) + 231*2^n for n>=0.
etc.
G.f.: (3 + 5*x)/(1 - x - 2*x^2). - Stefano Spezia, Apr 26 2021
E.g.f: (11*exp(2*x) - 2*exp(-x))/3. - Jianing Song, Apr 26 2021
MATHEMATICA
LinearRecurrence[{1, 2}, {3, 8}, 35] (* Amiram Eldar, Apr 25 2021 *)
PROG
(PARI) a(n) = (11*2^n - 2*(-1)^n)/3 \\ Felix Fröhlich, Apr 25 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Apr 25 2021
EXTENSIONS
More terms from Michel Marcus, Apr 25 2021
New name from Jianing Song, Apr 25 2021
STATUS
approved