login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340535
Number of domino tilings (or dimer coverings) of the 2n X n grid.
1
1, 1, 5, 41, 2245, 185921, 106912793, 90124167441, 540061286536921, 4652799879944138561, 289415868852204573601981, 25545661075321867247577262777, 16457725663617130715785831809325501, 14905470663149838513993965664256435411841, 99323759360556656337166635121447749135517599089
OFFSET
0,3
LINKS
FORMULA
a(n) = A187596(2n,n) = A187596(n,2n) = A187616(2n,n).
a(n) = A099390(2n,n) = A099390(n,2n) for n >= 1.
EXAMPLE
a(2) = 5:
.___. .___. .___. .___. .___.
|___| |___| |___| | | | | | |
|___| |___| | | | |_|_| |_|_|
|___| | | | |_|_| |___| | | |
|___| |_|_| |___| |___| |_|_|
.
MAPLE
b:= proc(m, n) option remember; local i, j, t, M;
M:= Matrix(n*m, shape=skewsymmetric);
for i to n do for j to m do t:= (i-1)*m+j;
if j<m then M[t, t+1]:= 1 fi;
if i<n then M[t, t+m]:= 1-2*irem(j, 2) fi
od od;
isqrt(LinearAlgebra[Determinant](M))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..15);
MATHEMATICA
T[_?OddQ, _?OddQ] = 0;
T[m_, n_] := Product[2(2+Cos[2 j Pi/(m+1)]+Cos[2 k Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}];
a[n_] := T[2n, n] // Round;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 27 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 10 2021
STATUS
approved