login
A340524
Triangle read by rows: T(n,k) = A000005(n-k+1)*A002865(k-1), 1 <= k <= n.
4
1, 2, 0, 2, 0, 1, 3, 0, 2, 1, 2, 0, 2, 2, 2, 4, 0, 3, 2, 4, 2, 2, 0, 2, 3, 4, 4, 4, 4, 0, 4, 2, 6, 4, 8, 4, 3, 0, 2, 4, 4, 6, 8, 8, 7, 4, 0, 4, 2, 8, 4, 12, 8, 14, 8, 2, 0, 3, 4, 4, 8, 8, 12, 14, 16, 12, 6, 0, 4, 3, 8, 4, 16, 8, 21, 16, 24, 14, 2, 0, 2, 4, 6, 8, 8, 16, 14, 24, 24, 28, 21
OFFSET
1,2
COMMENTS
Conjecture: the sum of row n equals A138137(n), the total number of parts in the last section of the set of partitions of n.
EXAMPLE
Triangle begins:
1;
2, 0;
2, 0, 1;
3, 0, 2, 1;
2, 0, 2, 2, 2;
4, 0, 3, 2, 4, 2;
2, 0, 2, 3, 4, 4, 4;
4, 0, 4, 2, 6, 4, 8, 4;
3, 0, 2, 4, 4, 6, 8, 8, 7;
4, 0, 4, 2, 8, 4, 12, 8, 14, 8;
2, 0, 3, 4, 4, 8, 8, 12, 14, 16, 12;
6, 0, 4, 3, 8, 4, 16, 8, 21, 16, 24, 14;
2, 0, 2, 4, 6, 8, 8, 16, 14, 24, 24, 28, 21;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A002865 T(6,k)
--------------------------
1 1 * 4 = 4
2 0 * 2 = 0
3 1 * 3 = 3
4 1 * 2 = 2
5 2 * 2 = 4
6 2 * 1 = 2
--------------------------
The sum of row 6 is 4 + 0 + 3 + 2 + 4 + 2 = 15, equaling A138137(6) = 15.
PROG
(PARI) f(n) = if (n==0, 1, numbpart(n) - numbpart(n-1)); \\ A002865
T(n, k) = numdiv(n-k+1) * f(k-1); \\ Michel Marcus, Jan 13 2021
CROSSREFS
Row sums give A138137 (conjectured).
Columns 1, 3 and 4 are A000005.
Column 2 gives A000004.
Columns 5 and 6 give A062011.
Columns 7 and 8 give A145154, n >= 1.
Leading diagonal gives A002865.
Cf. A339304 (irregular or expanded version).
Sequence in context: A268189 A265247 A022879 * A064984 A323226 A307197
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Jan 10 2021
STATUS
approved