OFFSET
0,5
LINKS
FORMULA
T(n,k) = 2^k * sqrt(Resultant(T_{2*n+1}(i*x/2), U_{2*k}(x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 4, 19, 91, 436, ...
1, 11, 176, 2911, 48301, ...
1, 29, 1471, 79808, 4375897, ...
1, 76, 11989, 2091817, 372713728, ...
PROG
(PARI) default(realprecision, 120);
{T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))}
(PARI) {T(n, k) = sqrtint(4^k*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*k, 2, x/2)))}
CROSSREFS
Main diagonal gives A127606.
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jan 09 2021
STATUS
approved