OFFSET
1,2
FORMULA
Equals -Pi^2*(log(2) + log(sqrt(2)-1)/2) + Pi * Integral_{x=0..Pi/2} log(1 + sqrt(1 + 1/(1 + sin(x)^2))) dx.
Equals limit_{n->infinity} Pi^2 * (log(A340396(n))/n^2 - log(2)) / 4.
EXAMPLE
1.627008991085721315763766677017604437985734719035793082916212355323520769...
MATHEMATICA
RealDigits[N[-Pi^2*(Log[2] + Log[Sqrt[2] - 1]/2) + Pi*Integrate[Log[1 + Sqrt[1 + 1/(1 + Sin[x]^2)]], {x, 0, Pi/2}], 120], 10, 110][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Jan 07 2021
STATUS
approved