login
A340241
Odd composite integers m such that A004187(3*m-J(m,45)) == 7*J(m,45) (mod m) and gcd(m,45)=1, where J(m,45) is the Jacobi symbol.
2
161, 323, 329, 341, 377, 451, 671, 901, 1007, 1079, 1081, 1271, 1819, 1853, 1891, 2033, 2071, 2209, 2407, 2461, 2501, 2743, 3653, 3827, 4181, 4843, 5473, 5611, 5671, 5777, 6119, 6601, 6721, 7429, 7567, 7721, 8149, 8399, 8473, 8557, 9821, 9881, 10207, 10877, 11041, 11207, 11309, 11663
OFFSET
1,1
COMMENTS
The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1)*J(m,D) (mod m) are called generalized Lucas pseudoprimes of level k+ and parameter a.
Here b=1, a=7, D=45 and k=3, while U(m) is A004187(m).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).
LINKS
Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 2018, 24(1), 9--15.
MATHEMATICA
Select[Range[3, 12000, 2], CoprimeQ[#, 45] && CompositeQ[#] && Divisible[ ChebyshevU[3*# - JacobiSymbol[#, 45] - 1, 7/2] - 7*JacobiSymbol[#, 45], #] &]
CROSSREFS
Cf. A004187, A071904, A340099 (a=7, b=1, k=1), A340124 (a=7, b=1, k=2).
Cf. A340239 (a=3, b=1, k=3), A340240 (a=5, b=1, k=3).
Sequence in context: A250644 A060641 A209282 * A157954 A159545 A157337
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Jan 01 2021
STATUS
approved