login
A340062
Averages k of twin primes such that the sum (with multiplicity) of prime factors of k-1, k and k+1 is a prime power (but not a prime).
0
39372, 104963700, 116479500, 182003250, 202991022, 231362100
OFFSET
1,1
EXAMPLE
a(3) = 116479500 is a member because 116579499 and 11657501 are primes and the sum of prime factors of 116579499, 116579500 = 2^2*3*5^3*19*61*67 and 116579501 is 232959169 = 15263^2 where 15263 is prime.
MAPLE
filter:= proc(t)
local r, s, f;
if not(isprime(t-1) and isprime(t+1)) then return false fi;
r:= 2*t+add(s[1]*s[2], s=ifactors(t)[2]);
f:=numtheory:-factorset(r);
nops(f) = 1 and r <> f[1]
end proc:
select(filter, [seq(t, t=6..3*10^8, 6)]);
CROSSREFS
Sequence in context: A183833 A203875 A252604 * A031823 A205035 A205283
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, Dec 27 2020
STATUS
approved