login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340052
a(n) = Product_{1<=i<j<=n} (4*sin(i*Pi/(2*n+1))^2 + 4*sin(j*Pi/(2*n+1))^2).
6
1, 1, 5, 91, 5661, 1173821, 801125065, 1786768287095, 12964564030176889, 305121026002697122873, 23243604301636717923421133, 5722586073277932639539150258131, 4548248834078776410469611991220703125
OFFSET
0,3
LINKS
FORMULA
a(n)^2 = A127605(n)/(2^n * (2*n+1)).
a(n) ~ sqrt(Gamma(1/4)) * exp(G*(2*n+1)^2/(2*Pi)) / (2^(n/2 + 5/4) * Pi^(3/8) * n^(3/4)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Dec 30 2020
MATHEMATICA
Table[2^(n*(n-1)) * Product[Product[Sin[i*Pi/(2*n + 1)]^2 + Sin[j*Pi/(2*n + 1)]^2, {i, 1, j-1}], {j, 2, n}], {n, 0, 15}] // Round (* Vaclav Kotesovec, Dec 30 2020 *)
PROG
(PARI) default(realprecision, 120);
{a(n) = round(prod(j=2, n, prod(i=1, j-1, 4*sin(i*Pi/(2*n+1))^2+4*sin(j*Pi/(2*n+1))^2)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 29 2020
STATUS
approved