login
A339912
Numbers k > 1 for which bigomega(k) < bigomega(k-1)/2, where bigomega gives the number of prime factors, counted with multiplicity.
4
13, 17, 19, 29, 31, 33, 37, 41, 43, 49, 53, 61, 65, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 121, 127, 129, 131, 137, 139, 145, 149, 151, 157, 161, 163, 169, 173, 177, 181, 191, 193, 197, 199, 201, 209, 211, 217, 223, 229, 233, 239, 241, 251, 253, 257, 265, 269, 271, 277, 281, 283, 289, 293, 301, 305, 307, 311, 313
OFFSET
1,1
MATHEMATICA
Select[Range[3, 313, 2], PrimeOmega[#] < PrimeOmega[# - 1]/2 &] (* Michael De Vlieger, Dec 22 2020 *)
Flatten[Position[Partition[PrimeOmega[Range[400]], 2, 1], _?(#[[2]]<#[[1]]/2&), 1, Heads->False]]+1 (* Harvey P. Dale, Jan 11 2024 *)
PROG
(PARI) isA339912(n) = ((n>1)&&((2*bigomega(n))<bigomega(n-1)));
CROSSREFS
Cf. A001222.
Subsequence of A339911 and of A339910.
Cf. also A339908.
Sequence in context: A105878 A054476 A319504 * A099184 A098095 A249953
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 22 2020
STATUS
approved