login
A339858
Middle side of integer-sided primitive triangles whose sides a < b < c form a geometric progression.
4
6, 12, 20, 30, 35, 40, 42, 56, 63, 70, 77, 72, 88, 90, 99, 117, 126, 110, 130, 132, 143, 154, 165, 176, 187, 156, 204, 228, 182, 195, 208, 221, 234, 247, 260, 273, 210, 238, 266, 240, 255, 285, 330, 345, 272, 304, 336, 368, 400, 306, 323, 340, 357, 374, 391, 408, 425, 442, 459
OFFSET
1,1
COMMENTS
The triples of sides (a, b, c) with a < b < c are in increasing lexicographic order. This sequence lists the b's.
For the corresponding primitive triples and miscellaneous properties and references, see A339856.
This sequence is not increasing. For example, a(11) = 77 for triple (49, 77, 121) while a(12) = 72 for triple (64, 72, 81).
Oblong numbers k*(k+1) >= 6 form a subsequence (A002378) and belong to triples of the form (k^2, k*(k+1), (k+1)^2).
FORMULA
a(n) = A339856 (n, 2).
EXAMPLE
a(1) = 6 only for the smallest such triangle (4, 6, 9) with 6^2 = 4*9 and a ratio q = 3/2.
a(2) = 12 only for the triangle (9, 12, 16) with 12^2 = 9*16 and a ratio q = 4/3.
MAPLE
for a from 1 to 300 do
for b from a+1 to floor((1+sqrt(5))/2 *a) do
for c from b+1 to floor((1+sqrt(5))/2 *b) do k:=a*c;
if k=b^2 and igcd(a, b, c)=1 then print(b); end if;
end do;
end do;
end do;
PROG
(PARI) lista(nn) = {my(phi = (1+sqrt(5))/2); for (a=1, nn, for (b=a+1, floor(a*phi), for (c=b+1, floor(b*phi), if ((a*c == b^2) && (gcd([a, b, c])==1), print1(b, ", "); ); ); ); ); } \\ Michel Marcus, Dec 30 2020
CROSSREFS
Cf. A339856 (triples), A339857 (smallest side), this sequence (middle side), A339859 (largest side), A339860 (perimeter).
Cf. A336751 (similar for sides in arithmetic progression).
Cf. A335894 (similar for angles in arithmetic progression).
Cf. A002378 \ {0,2} (a subsequence).
Sequence in context: A079760 A109895 A083209 * A080714 A116368 A343065
KEYWORD
nonn
AUTHOR
Bernard Schott, Dec 29 2020
STATUS
approved