login
A339725
Odd composite integers m such that A006497(3*m-J(m,13)) == 11*J(m,13) (mod m), where J(m,13) is the Jacobi symbol.
3
9, 27, 119, 133, 145, 165, 205, 261, 341, 393, 649, 693, 705, 901, 945, 1121, 1173, 1189, 1353, 1431, 1485, 1881, 2133, 2805, 3201, 3605, 3745, 4187, 5173, 5461, 5841, 5945, 6165, 6213, 6485, 6943, 6993, 7107, 7991, 8321, 8449, 9669, 11041, 11781, 11961, 12861
OFFSET
1,1
COMMENTS
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=3, D=13 and k=3, while V(m) recovers A006497(m), with V(2)=11.
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).
LINKS
Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018).
MATHEMATICA
Select[Range[3, 13000, 2], CoprimeQ[#, 13] && CompositeQ[#] && Divisible[LucasL[3*# - JacobiSymbol[#, 13], 3] - 11*JacobiSymbol[#, 13], #] &]
CROSSREFS
Cf. A006497, A071904, A339126 (a=3, b=-1, k=1), A339518 (a=3, b=-1, k=2).
Cf. A339724 (a=1, b=-1), A339726 (a=5, b=-1), A339727 (a=7, b=-1).
Sequence in context: A053762 A126322 A020279 * A328604 A357667 A230185
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Dec 14 2020
STATUS
approved