login
Number of non-graphical integer partitions of 2n.
24

%I #8 Dec 18 2020 07:59:20

%S 0,1,3,6,13,25,46,81,141,234,383,615,968,1503,2298,3468,5176,7653,

%T 11178,16212,23290,33218,46996,66091,92277,128122,176787,242674,

%U 331338,450279,608832,819748,1098907,1467122,1951020,2584796,3411998

%N Number of non-graphical integer partitions of 2n.

%C An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. See A209816 for multigraphical partitions, A000070 for non-multigraphical partitions. Graphical partitions are counted by A000569.

%C The following are equivalent characteristics for any positive integer n:

%C (1) the prime indices of n can be partitioned into distinct strict pairs (a set of edges);

%C (2) n can be factored into distinct squarefree semiprimes;

%C (3) the prime signature of n is graphical.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition.</a>

%F a(n) + A000569(n) = A000041(2*n).

%e The a(1) = 1 through a(4) = 13 partitions:

%e (2) (4) (6) (8)

%e (2,2) (3,3) (4,4)

%e (3,1) (4,2) (5,3)

%e (5,1) (6,2)

%e (3,2,1) (7,1)

%e (4,1,1) (3,3,2)

%e (4,2,2)

%e (4,3,1)

%e (5,2,1)

%e (6,1,1)

%e (3,3,1,1)

%e (4,2,1,1)

%e (5,1,1,1)

%e For example, the partition (2,2,2,2) is not counted under a(4) because there are three possible graphs with the prescribed degrees:

%e {{1,2},{1,3},{2,4},{3,4}}

%e {{1,2},{1,4},{2,3},{3,4}}

%e {{1,3},{1,4},{2,3},{2,4}}

%t prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];

%t strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];

%t Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]=={}&]],{n,0,5}]

%Y A006881 lists squarefree semiprimes.

%Y A320656 counts factorizations into squarefree semiprimes.

%Y A339659 counts graphical partitions of 2n into k parts.

%Y The following count vertex-degree partitions and give their Heinz numbers:

%Y - A058696 counts partitions of 2n (A300061).

%Y - A000070 counts non-multigraphical partitions of 2n (A339620).

%Y - A209816 counts multigraphical partitions (A320924).

%Y - A339655 counts non-loop-graphical partitions of 2n (A339657).

%Y - A339656 counts loop-graphical partitions (A339658).

%Y - A339617 [this sequence] counts non-graphical partitions of 2n (A339618).

%Y - A000569 counts graphical partitions (A320922).

%Y The following count partitions of even length and give their Heinz numbers:

%Y - A027187 has no additional conditions (A028260).

%Y - A096373 cannot be partitioned into strict pairs (A320891).

%Y - A338914 can be partitioned into strict pairs (A320911).

%Y - A338915 cannot be partitioned into distinct pairs (A320892).

%Y - A338916 can be partitioned into distinct pairs (A320912).

%Y - A339559 cannot be partitioned into distinct strict pairs (A320894).

%Y - A339560 can be partitioned into distinct strict pairs (A339561).

%Y Cf. A001055, A007717, A025065, A320921, A320922, A338899, A339564, A339619, A339660, A339661.

%K nonn

%O 0,3

%A _Gus Wiseman_, Dec 13 2020